
Course Manager

Benjamin Choi
BSMS Candidate
December 2019

Department of CSE
Washington University

St. Louis, MO
Email: benjaminchoi@wustl.edu

Currently, TA checkout procedures for classes such as CSE
131 and 247 rely on TAs entering secure information onto
students’ browsers. This is an obvious security concern that
should be fixed. With my master’s project, I wanted to cre-
ate a secure system for TA checkouts that rely on QR codes.
The system will have a cross-platform mobile app and a web
frontend. After an instructor invites students to a course, stu-
dents will be granted a unique QR code for every assignment.
TAs and instructors will then be able to check out students’
assignments using either the mobile app or website. In this
way, students never gain access to any information beyond
their unique QR codes. The system would also be able to
track which TAs checked out which students, helping to avoid
possible conflict-of-interest issues.

Nomenclature
CRUD Create, Retrieve, Update, Destroy
DRF Django Rest Framework
DRY Don’t Repeat Yourself
REST API REpresentational State Transfer Application

Programming Interface
SPA Single Page App(s)

1 Motivation
Although the project was inspired by a need in the CSE

department, I wanted to pursue implementation in a way
that would also serve as an educational experience and an
opportunity for me to expand my knowledge of industry-
standard tools. As a result, the project was implemented
using Django, React, and React Native. DRF was used as
a way for the Django backend to communicate with the Re-
act and React Native frontends. The use of React and React
Native makes the project both desktop and mobile-friendly,
while the use of Django and DRF allows the two frontends
to access the same data. While I did have limited exposure to
Django, DRF, React, and React Native prior to this project,
I saw this as an excellent opportunity to expand my profi-

ciency with these tools to the point where I would feel com-
fortable using them for future works or working in industry.

As explained in the abstract, a big focal point of the
project was security. Thus, configuring the REST API to
only allow access to relevant parties served as one of the
biggest hurdles of the project and how to do so became one of
the most useful things I learned over the course of my work.

2 Initial Setup
To properly demo the work, I set up a publicly-

accessible demo website as a subdomain on my personal
website, hosted on a DigitalOcean Droplet that serves up
content using Postgres, Gunicorn, and Nginx.

Before doing anything else, I linked my website to the
Droplet by configuring the DNS settings of the domain to use
DigitalOcean’s name servers. I then configured the network-
ing settings on DigitalOcean to point the subdomain linked
to the demo to the IP address associated with my Droplet. [1]

To set up the Droplet, I created a firewall using UFW and
allowed OpenSSH and Nginx access. I then installed Python,
Postgres, and Nginx onto my machine. On Postgres, I cre-
ated a new ”coursemanager” database and a new ”django”
user, giving the ”django” user all privileges on the ”coursem-
anager” database. In order to set up Gunicorn and the Django
project itself, I created a new Python environment for the
project using virtualenv and managed all of the needed de-
pendencies with a requirements.txt file (including django,
gunicorn, and psycopg2). From there, I initialized a new
Django project, added my domain and the Droplet’s IP ad-
dress to the list of allowed hosts, changed the database to use
the ”coursemanager” Postgres database, pointed the STATIC
and MEDIA directories to be inside the base directory, mi-
grated, collected the initial static content, and created an ini-
tial superuser. After creating the Django project, I initialized
Gunicorn by setting up the necessary gunicorn.socket and
gunicorn.service files, making sure to point them to the cor-
rect working directory and project path. Finally, I configured
Nginx by creating an nginx file for the project and pointing
it to my domain and project directory. [2]



To expedite this process for future users, I created a
setup script and wrote instructions on how to use it on the
project’s Github README (see Documentation and Project
Resources).

3 Design
As a programmer, the ability to make forward-thinking

design decisions on-the-fly is an invaluable skill and one that
I felt was strengthened over the course of the project. In this
section, I will detail how Course Manager is designed and
why I made these design choices.

3.1 Django
3.1.1 Framework Choice

Due to the university’s investment in Canvas, it would
have been possible to sidestep the creation of a backend and
instead serve up content using Canvas’s REST API. How-
ever, I decided to implement my own backend for two rea-
sons: to learn how to create a backend capable of complex,
unique use-cases and to make Course Manager a potentially
useful tool outside the scope of WUSTL specifically. Had I
not implemented the backend myself, I would have learned
significantly less in terms of sensible model design, the cre-
ation of a REST API, handling requests and permissions, and
combining a frontend with a backend. Additionally, without
its own backend, Course Manager would be a completely
useless tool for any institution not using Canvas.

As mentioned before, while the project started from a
need in the CSE department, I also wanted to treat it as an
opportunity to expand my knowledge of full-stack develop-
ment and the various tools involved in full-stack develop-
ment, including the creation of a backend. While the deci-
sion to implement my own backend was an enriching educa-
tional experience and learning opportunity, it did come at the
loss of compatibility with Canvas. Steps to remedy this issue
is discussed in Future Work.

As for the choice of Django specifically, I chose it due
to its wide adoption in industry, its use of and my familiarity
with Python, and my prior experiences with the framework.

3.1.2 Models
Course Manager is made up of six models that define

how the project’s data is stored in Postgres. The following
details the names of the models, their relevant fields, and the
data type of each field. Note that the first field detailed acts
as the primary key of the model and references to the model
will be represented in the database by its primary key.

1. User: {email: email address, first name: string,
last name: string, is staff: bool, is active: bool}

2. RegisterInvitation: {id: int, recipient: User, token:
string}

3. Course: {id: int, course id: string, title: string, instruc-
tors: [User], tas: [User], students: [User]}

4. AssignmentGroup: {id: int, course: Course, group: As-
signmentGroup, title: string, points: int, due date: date-
time}

5. Assignment: {id: int, course: Course, group: Assign-
mentGroup, title: string, points: int, due date: date-
time}

6. StudentAssignment: {id: int, assignment: Assign-
ment, student: User, qr code: string, completed: bool,
points earned: float, timestamp: datetime, is late: bool,
grader: User, comment: string}

Although Django comes with a default implementation
of the User model, I decided to use a custom User model (a
choice that required a great deal of code refactoring). The
chief differences between the custom User model and the
vanilla User model are: the custom User model lacks an
auto-incrementing numeric id field, a unique username field,
and requires the email field to be unique. Although Django
makes it comparably difficult to use a custom User model,
I chose to use one in order to get around the issues related
to course invitations. Due to the nature of Course Manager,
it made most sense for instructors to be able to invite other
instructors, TAs, or students to courses via email (the same
way services like Bitbucket invite users to join a repo as a
collaborator). However, this presented a natural challenge as
it is impossible to add a user to a course’s instructors, tas, or
students field without the User already being in the system.
When thinking of ways to get around this issue, I came up
with a couple viable strategies:

1. Instructors should prompt students to sign up for Course
Manager, providing a key to enroll in the course (similar
to Piazza)

2. The instructors, tas, and students fields should not rep-
resent a list of User models, but should instead represent
a list of emails which can be used later to retrieve User
models once invitees register

3. When instructors add an email to the instructors, tas, or
students field, it should create a new User with an un-
usable password with the is active flag set to false, and
then send the user a register invitation that will set up a
proper password and set the is active flag to true

Although all are viable strategies, I decided to go with
the third option. As Course Manager would presumably have
a very specific use-case, it made little sense for random par-
ties to be able to register for an account. Thus, I decided that
users should only be able to register when invited to do so by
an instructor. Between options two and three, I decided to go
with option three as it provided greater ease when working
with nested serializers for the REST API. This choice neces-
sitated the use of the custom User model, as it would have
been impossible to create a vanilla Django user model with
an email alone, instead necessitating the creation of a unique
username. [3]

Otherwise, most of the other models are fairly self-
explanatory. The RegisterInvitation carries a one-to-one re-
lationship with a User model, and allows the user to for-
mally set up an active account once invited to use Course



Manager with an auto-generated token. The Course model
represents a course, the AssignmentGroup model represents
a category of assignments (e.g. Labs), while an Assign-
ment model represents a specific Assignment within an As-
signmentGroup (e.g. Lab0). Although both Assignment-
Group and Assignment have points values, the instructor
can have the total points values of all Assignment objects
within an AssignmentGroup surpass the total points for the
AssignmentGroup. The thought behind this behavior came
from CSE 131 extensions, in which students can choose to
do as many extensions as they want, but will only receive
full credit if they surpass a given points threshold. Finally,
the StudentAssignment object is unique for any given User
and Assignment combination, and represents that student’s
unique attempt at completing the assignment. Critically, it
holds the qr code field that will be used to check them out.
As all QR codes ultimately represent string values, I decided
to simply store the QR code as a string and render it on the
frontend (rather than storing an image of the QR code on the
server and making the qr code field point to the file).

3.2 DRF and React
3.2.1 Framework Choice

It is important to acknowledge why I chose to use React
in the first place. After all, it is possible to meet all frontend
needs without DRF or React, relying instead on Jinja.

First, the need for DRF becomes clear when thinking
about the mobile component of the project. While it would
be possible to create a mobile-friendly website using Jinja
and a CSS tool like Bootstrap, creating a mobile app (some-
thing I aimed to do for Course Manager) necessitates the use
of DRF to serve up data from a central source of truth. Ad-
ditionally, creating a REST API for the backend allows for
greater extensibility, making the project much more future-
proof and allowing for generally more flexible use-cases
(such as compatibility with third-party scripts).

Second, I chose to use React instead of Jinja for two rea-
sons: to put all of the CRUD logic in the REST API and to
exploit the DRY design philosophy allowed by React’s use
of components. As mentioned before, I decided to make the
project as extensible as possible by creating a REST API.
However, creating a well-functioning REST API, while du-
plicating all of the CRUD logic in vanilla Django to be com-
patible with Jinja’s server-side template rendering scheme,
seemed like a poor design choice, breaking DRY philoso-
phy and increasing development time. Thus, it made little
sense to use Jinja while also committing to the creation of
a REST API. Using React not only allows the frontend to
serve up content using a REST API, it also allows develop-
ers to reuse large chunks of the frontend with its use of com-
ponents. Overall, using Django and React, with DRF as the
bridge between the two, seemed like the best design decision
to achieve my goals.

When creating a web application using Django, DRF,
and React, there are three commonly used design patterns:

1. React in its own ”frontend” Django app, in which a sin-
gle HTML template is loaded and React manages the

frontend
2. DRF as a standalone API and React as a standalone SPA
3. Using mini React apps inside Django templates

Ultimately, I decided to go with the first option for a cou-
ple of reasons. As I wanted to do as much of the frontend us-
ing React as possible, I ruled out option three right away (this
would also make working with React Native easier as React
and React Native share much of the same syntax and flavor).
Of the two remaining options, option two seemed best for
my use case as it kept React closer to Django, better allowed
for an interface with a lot of user interactions/requests, and
is better suited for an app-like website. [4]

3.2.2 Serializers
Due to the behavior I wanted in Course Manager, it be-

came necessary to highly customize model create and update
behaviors. When working with DRF, it is generally consid-
ered best-practice to put as much of that logic into the seri-
alizers as possible. As a result, many of the serializers for
the various models explained in Models required significant
code refactoring, something I had little-to-no prior experi-
ence with in DRF.

For the User model, it was important to keep in mind
that the only time a new User would be created is when in-
structors add emails to a course’s instructors, tas, or students
field. Thus, I needed to create a special RegisterSerializer
that would only be called when a course’s User-related fields
were created or updated. However, whenever a new user is
created using the RegisterSerializer, it would also need to
create a RegisterInvitation so that invitees can receive emails
prompting them to activate their accounts. As a result, the
create method of the RegisterSerializer not only needed to
create a new inactive User, it also needed to create a Register-
Invitation using the RegisterInvitationSerializer. The Regis-
terInvitationSerializer, on the other hand, also needed a mod-
ified create method that would not only create a RegisterIn-
vitation model, but would also send an invitation email to the
recipient with the recipient’s token embedded in the invita-
tion link. Additionally, as it would be important for students
to be able to activate their accounts, I also needed to create
a TokenRegisterSerializer that allowed inauthenticated users
to update their accounts to be active using their invitation
links.

Once it was guaranteed that all of the User objects in
a course’s user-related fields existed in the database (inac-
tive or not), the CourseSerializer also needed to ensure that
whenever new students are added to a course (either during
a Course model’s creation or modification), it also creates
unique StudentAssignment objects for each assignment in
the course. Conversely, it was also important for the cre-
ation/modification of a new Assignment to result in a corre-
sponding change in the StudentAssignment model for each
student in the course. In the case of an update to the As-
signment model, it was important to ensure that changing an
assignment’s possible points value or due date would not re-
sult in students getting unfairly credited or penalized, thus
the update method of the Assignment serializer ensures that



the points and due date fields scale to correspond with the
new values (e.g. if a student received a 4/5 on an assignment
and the assignment’s points value is changed from 5 to 10,
the student’s earned points changes from 4 to 8). Some addi-
tional interactions between the models take place in the API
Views rather than the serializer, the reasoning behind which
can be found in the API Views section.

3.2.3 API Views
In DRF, API Views act as the endpoints for communi-

cation between clients and the server. The API Views are
thus what call the serializers. As mentioned before, it is gen-
erally best practice to leave as much of the interdependent
CRUD logic in the serializers as possible, but it did become
necessary to move that logic to the views in very specific
circumstances.

Chiefly, in the views related to the Course model, it was
necessary to move the automated creation of inactive users
to the view. This is mainly because before a model object
can be created or updated by a serializer, it first performs a
series of validity checks. As trying to add nonexistent users
to a user-related field fails these validity checks, it became
necessary to move the logic for the creation of inactive users
to the view. Thus, the view for the Course model is actually
what calls the RegisterSerializer, which in turn starts a chain
of events.

Otherwise, it was only necessary to change the default
behavior of DRF’s views when responses needed to be cus-
tomized. For example, when a user logs in, the view associ-
ated with logging in also returns all of the courses that user
is a part of as an instructor, TA, or student. These modified
responses are meant to increase efficiency by decreasing the
need for a series of calls to the REST API, instead relaying
all needed information in one request/response.

3.2.4 Policies
As mentioned in the abstract and the Motivation section,

security was a big focal point of the project (both for practi-
cal and educational reasons). While it would be fairly easy
to restrict the frontend to show features by user status (such
as whether they were admins, instructors, TAs, or students),
it would leave the REST API vulnerable to possible attack
unless the API itself was restricted by user status. While it is
fairly easy to restrict the API by whether the user is logged
in or is an admin, it is not simple to restrict views according
to qualifiers like whether a requester is in a Course model’s
”instructors” field. Thus, it became necessary to use Rest Ac-
cess Policy, a third-party app built for DRF meant to allow
for extensible permissions schemes.

When working with policies, the biggest difficulty came
from differentiating between ”detailed” and ”non-detailed”
requests. While detailed requests work on a specific instance
of a model object, non-detailed requests work on a group of
model objects. In CRUD, update, and destruction are all ex-
plicitly detailed requests. However, retrieval can be detailed
or non-detailed. Additionally, although creation returns a
single object like a detailed request response, as the object

does not yet exist in the database the request is formatted
like a non-detailed request. As a result, the policy checks
need to keep this distinction in mind as detailed requests are
able to access a specific model object and can check for the
user’s relationship to that object, whereas a non-detailed re-
quest cannot.

For added security, the way models are serialized also
differ according to a user’s position within a course. For ex-
ample, instructors and TAs receive a list of all students for
a given course, but students only receive limited informa-
tion about instructors and TAs, and zero information about
other students in the course. Overall, the REST API is ex-
tremely robust in terms of permissions, only allowing users
to access features relevant to them and behaving as expected.
One caveat is that users with staff status (admins) have blan-
ket all-around access to every point of the REST API.

3.2.5 Frontend
In modern web development, high design standards de-

mand that websites should be intuitive, mobile-friendly, and
beautiful. In that pursuit, Bootstrap has become a stan-
dard tool in any frontend programmer’s toolkit, and some-
thing I chose to integrate heavily into the frontend. React
even makes this extremely easy to do with React Bootstrap,
which turns vanilla Bootstrap CSS elements into easily con-
figurable React components. Out of the wide array of Boot-
strap themes, I chose to go with the Darkly theme.

While the Django backend acts as the central source of
truth for both the React and React Native frontends, the com-
ponents of React need an internal source of truth as well
(after all, components should not continuously query the
database for the same information). Out-of-the-box React
components lack the capacity to share state and prop ele-
ments intuitively, necessitating the use of tools like redux.
Redux integrates with React to provide a central state shared
between all connected React components, allowing the fron-
tend to maintain an internal source of truth. Although requir-
ing some more configuration upfront, Redux’s use is nearly
unavoidable for all large-scale, query-based React websites.

Finally, in keeping with the topics discussed in the Poli-
cies section, I also restricted the frontend’s views to accu-
rately reflect the content served to the user by the REST API.
For example, it makes no sense for TAs and students to see
the option to edit or delete courses, assignment groups, and
assignments if they do not have the permissions to do so.
Thus, the frontend was designed to keep in-line with the per-
missions scheme outlined in the REST API’s polices. See
Fig. 1, 2, 3, & 4 for reference.

3.3 React Native
3.3.1 Framework Choice

Although it is possible to create mobile-friendly web-
sites using CSS tools like Bootstrap, I decided to create a
mobile app for the same reason that most tech companies
choose to create mobile apps instead of relying on a mobile-
friedly website. While users generally dislike having to in-
stall an application for one-off use, they prefer to interact



Fig. 1. A side-by-side comparison of an admin’s homepage and a
non-admin’s homepage (from top to bottom)

Fig. 2. A side-by-side comparison of an instructor’s course page
and a student’s course page (from top to bottom)

with an app when they need to use it frequently. As TAs
and instructors would presumably need to check out students
at least twice a week, I felt that most users would prefer an
app. Additionally, due to Apple’s restriction of the iPhone,
it is impossible to access the camera (something needed to
make the QR code scanning checkout as quick as possible)
without using Apple’s Safari browser. Additionally, no mat-
ter how mobile-friendly the website is, a mobile app simply
offers greater ease of use when working on mobile phones.
Finally, just as I felt that implementing the backend would be
an excellent opportunity to expand my knowledge, I felt the
same way about the creation of the mobile app.

Fig. 3. A side-by-side comparison of an instructor’s assignment
group page and a student’s assignment group page (from top to bot-
tom)

Fig. 4. A side-by-side comparison of an instructor’s assignment
page and a student’s assignment page (from top to bottom)

As for the choice of React Native specifically, it seemed
like a no-brainer after choosing React for my web frontend
due to their common design philosophies and general syntax.

3.3.2 Navigation Flow
When designing the app, it was important to keep in

mind what the intended use case would be. For this project, it
was to allow instructors and TAs to make use of their phones’
cameras in order to check out students’ QR codes as quickly
as possible. Thus, the app only needed to cater to instructors



and TAs, without needing a complicated navigation flow. As
a result, the app can be broken down to just 4 screens con-
nected by 2 navigators: a loading screen to see if the user is
signed in already, a sign in screen to allow the user to sign
in, a scanner screen to allow the user to scan QR codes, and
a checkout screen for the user to assign students points and
comments. The scanner and checkout screens are connected
by a StackNavigator, which is in turn connected to the load-
ing and signing screens by a SwitchNavigator. Much like the
React frontend, the React Native frontend also makes use of
redux to create a central source of truth shared between all
React components. The app is simple and purposefully so
(see Fig. 5).

Fig. 5. The login screen, scanner screen, and checkout screen on
iOS (from left to right)

4 Documentation
As stated in the Initial Setup section, I thoroughly docu-

mented how to setup, use, and make changes to the project on
the Gibhub repo’s README (see ”Github repo” on Project
Resources). This documentation also includes through in-
structions on how to access and work with the REST API
created by DRF. As a result, an explanation of these steps
and instructions are omitted on this project report and can
instead be found on the Github repo.

5 Lessons Learned
In many ways, I had to learn much of what I had to do for

this project from scratch. This project was the first time that I
had to learn how to adjust a domain registrar’s DNS settings
to point to a cloud provider’s name servers, set up a subdo-
main, get a cloud server up and running, manage Gunicorn
and Nginx, customize Django’s and DRF’s standard behav-
iors, set up a robust permissions scheme for a REST API, and
build a cross-platform mobile/web frontend. Although I did
have limited experience with Django, DRF, React, and React

Native from previous projects, I had never interacted with it
with the same amount of depth as I did for this project.

Not only do I feel like I have strengthened my full-stack
developments skills, this project was also a lesson in intelli-
gent design and product management. For example, during
the first semester of the project, I feel in retrospect that I
spent too much time debating the possible routes to go down
rather than committing to a single path and sticking with it.
The uncertainty at the start had dire consequences in terms
of product management. Initially, I felt it was okay to thor-
oughly explore all of the possible options for what direction
the project should go down as I grossly underestimated how
much time various tasks would take during development.
Originally, I had intended to include two or three additional
features that never made it into Course Manager.

Another mistake I made is that I decided to tackle the
React Native frontend before any other portion of the project
as, at the time, that was the framework I was most familiar
with. By the time I finished the Django and React portion of
the project, however, I discovered that much of the work that
I did for the React Native frontend would not be ready for
the project presentation as React Native overhauled their de-
pendency scheme in a huge update, which left my React Na-
tive project broken. For future projects, I now know that the
backend and frontend should either be tackled concurrently
or the backend should be finished first, in order to avoid is-
sues like this in the future.

6 Future Work
As mentioned previously in the justification for using

Django, the decision to implement my own backend came
at the cost of using Canvas for the backend. In the future,
independent of this project, I plan to incorporate an option
into Course Manager that would allow instructors to instead
use Canvas’s REST API as opposed to the one I built with
DRF.

For the future, I also see three tasks that would make
Course Manager much more useful for WUSTL (though not
necessarily for other institutions).

1. Configuring Course Manager to work with a tool like
Jenkins in order to check if students committed and
passed all of the tests associated with an assignment be-
fore allowing a TA or instructor to check them out

2. Incorporating the features explored in other course lo-
gistics Master’s projects, such as this TA office hours
tool built by WUSTL alum Kateryna Kononenko.

3. Integrating Course Manager with WUSTL’s Connect
API to push user management to the university’s exist-
ing architecture, which would add the bonus benefit of
allowing TAs and instructors to visually check the iden-
tity of students with their university picture

These are all additions that I would like to pursue, but
would encourage any other WUSTL students to attempt.
While I feel like this project became an excellent educational
opportunity, it still needs some work before it becomes an in-

https://github.com/katerynakononenko/express_hours
https://github.com/katerynakononenko/express_hours


valuable tool for the CSE department, although I believe it is
nearly there.

7 Conclusions
As stated in my abstract, I wanted to build a secure,

cross-platform TA checkout system based on QR codes. In
terms of what I set out to do, as stated on my original project
proposal, I achieved the tasks I outlined for myself. As a
result of my efforts, I feel I have grown considerably as a
full-stack developer, product manager, and product designer.
Despite this, I feel that Course Manager still has a lot of room
for growth that would make it increasingly more useful for
the university.

8 Project Resources
The following are the links to all of the work related to

this project:

Project demo: http://masters.
benjaminchoi.com/
Github repo: https://github.com/choibc97/
coursemanager
YouTube clip of a QR checkout demo: https://
youtu.be/disuoQwKahA
Project presentation: https://docs.
google.com/presentation/d/
12zC06G4hU9abvGivPs0GsLLakLDVvjK9q8Ief1xmx_
w/edit?usp=sharing

Acknowledgements
Thank you to Professor Dennis Cosgrove for acting as

my project advisor, mentor, and friend. Thank you to Pro-
fessor Ron Cytron for being my major advisor, a committee
member, and for introducing me to the world of Computer
Science in CSE 131. Thank you to Professor Todd Sproull
for being a committee member and for the lessons in full-
stack development. Thank you to all of the members of the
WUSTL CSE Department for your time and instruction, I
have learned a lot. Lastly, thank you, whoever is reading
this, for taking the time to examine my work.

References
[1] Ellingwood, J. Initial server setup with ubuntu

18.04. https://www.digitalocean.com/
community/tutorials/initial-server-
setup-with-ubuntu-18-04.

[2] Ellingwood, J. How to set up django with postgres,
nginx, and gunicorn on ubuntu 18.04. https://www.
digitalocean.com/community/tutorials/
how-to-set-up-django-with-postgres-
nginx-and-gunicorn-on-ubuntu-18-04.

[3] Herman, M. Creating a custom user model
in django. https://testdriven.io/blog/
django-custom-user-model/.

[4] Gagliardi, V. Tutorial: Django rest with react (django
3 and a sprinkle of testing). https://www.
valentinog.com/blog/drf/#Django_REST_
with_React_Django_and_React_together.

http://masters.benjaminchoi.com/
http://masters.benjaminchoi.com/
https://github.com/choibc97/coursemanager
https://github.com/choibc97/coursemanager
https://youtu.be/disuoQwKahA
https://youtu.be/disuoQwKahA
https://docs.google.com/presentation/d/12zC06G4hU9abvGivPs0GsLLakLDVvjK9q8Ief1xmx_w/edit?usp=sharing
https://docs.google.com/presentation/d/12zC06G4hU9abvGivPs0GsLLakLDVvjK9q8Ief1xmx_w/edit?usp=sharing
https://docs.google.com/presentation/d/12zC06G4hU9abvGivPs0GsLLakLDVvjK9q8Ief1xmx_w/edit?usp=sharing
https://docs.google.com/presentation/d/12zC06G4hU9abvGivPs0GsLLakLDVvjK9q8Ief1xmx_w/edit?usp=sharing
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04
https://testdriven.io/blog/django-custom-user-model/
https://testdriven.io/blog/django-custom-user-model/
https://www.valentinog.com/blog/drf/#Django_REST_with_React_Django_and_React_together
https://www.valentinog.com/blog/drf/#Django_REST_with_React_Django_and_React_together
https://www.valentinog.com/blog/drf/#Django_REST_with_React_Django_and_React_together

	Motivation
	Initial Setup
	Design
	Django
	Framework Choice
	Models

	DRF and React
	Framework Choice
	Serializers
	API Views
	Policies
	Frontend

	React Native
	Framework Choice
	Navigation Flow


	Documentation
	Lessons Learned
	Future Work
	Conclusions
	Project Resources

